Christopher Goh

Inorganic Chemist

Metal-based catalysis can be found in many crucial biochemical and chemical processes. Taking advantage of these catalytic reactions as starting points, our group aims to discover new catalysts or to improve the efficiency of existing systems. A research problem in my group starts with an exploration of the variable space of a catalytic system. We examine the factors that influence the performance and hypothesize strategies for improving the catalyst, and probe these ideas by modifying catalyst compositions.

One current project involves the synthesis and application of copper based atom transfer radical polymerization (ATRP) catalysts. These catalysts provide the power to dictate the composition, molecular weight and molecular weight distribution of macromolecules, and to precisely control their architecture. Thus, such catalysts have a multitude of applications in designing new materials for packaging, automotive, and medical industries, for example.

A second project centers on the discovery of homogeneous iron catalysts for the oxidation of fatty acids and their derivatives. Fatty acids can be obtained from plant oils and represent a renewable resource for the polymer industry. The metal catalyzed oxidation of this class of compounds is of interest in the formation of resins, an industrially important class of compounds.